Biodiversity – carbon relationships: Linking seed dispersal ecology to biodiversity conservation and climate change mitigation

Fung, Tze Kwan & Koh, Lian Pin
Centre for Nature-based Climate Solutions, Department of Biological Sciences, National University of Singapore

tzekwantung@nus.edu

Introduction

- Biodiversity loss and climate change are two major global crises of the Anthropocene1.
- Biodiversity is the basis for securing the flow of ecosystem functions and services, such as carbon sequestration, that can contribute to climate change adaptation and mitigation2.
- However, the role of biodiversity has not always been considered at the heart of natural climate solutions3.
- An improved understanding of the explicit linkages between biodiversity and carbon is necessary to better integrate these solutions4.

1. Literature Review: Biodiversity – Carbon Relationships

To examine the relationship between biodiversity and carbon relevant for climate change mitigation.

Key findings

- Biodiversity underpins ecological processes for climate change mitigation.

A. Spatial prioritisation of high carbon ecosystems

- Mangroves, among the most carbon-rich forests in the tropics
- Ecological factors challenging to be incorporated at global scale

B. Spatial congruence of biodiversity patterns and carbon stock

- Positive relationships between carbon and tree diversity in tropical forests
- Relationships between carbon and other biodiversity elements e.g. animal species richness varied greatly

C. Direct role of biodiversity in the carbon cycle

- Plant–soil–atmosphere carbon pools
- Plant diversity, biomass and traits on carbon storage e.g. biodiversity–productivity relationships

D. Indirect role of biodiversity in influencing the carbon cycle

- Zoogeochemistry: role of wildlife in the carbon cycle
- Species interactions: key to a self-sustaining and resilient ecosystem
- Plant–animal interactions: Seed dispersal, pollination, seed predation, herbivory, nutrient cycling

E. Seed dispersal in tropical forests

- Large frugivore loss reduces carbon sequestration by up to 3.5%, with an impact of US$15.42 ha−1 year−15.
- Vital for maintaining plant diversity and regeneration of forests
- Animal-mediated seed dispersal as predominant form of dispersal in tropical forests

2. A Seed Dispersal – NbS Conceptual Framework for Tropical Forests

A. Community structure

Mutualistic network

- Plant–animal interactions

B. NbS, e.g.

Forest conservation

Forest regeneration & succession

Self-sustaining & resilient forest ecosystem

C. Climate change mitigation potential

Ecosystem service provision

- Carbon sequestration
- Carbon storage
- Co-benefits

Seed dispersal

Plant community

Confers resilience to disturbances, e.g.
- Biodiversity loss
- Climate change
- Land use change

Seed dispersers

Next steps:

- Investigate the seed dispersal network of tree species that are of particular interest for forest reforestation and carbon sequestration.
- Examine how the link between biodiversity and carbon would support conservation planning and contribute to sustainable implementation of natural climate solutions.

References

Acknowledgement

This study is funded by Mr. Lee Yuon Pang-Minnaer Graduate Fellowship and the NUS Centre for Nature-based Climate Solutions, which is supported by the National Research Foundation (NRF), Prime Minister’s Office, Singapore. The authors thank the NRF, Republic of Singapore, National Research Foundation, Singapore (NRF-NRF2019-138), Tigue and family credit to ProBit, Freepik, Geotag, Photos, Anne Aimi, Dori and Hand Elziah, Michelle Nagle, Joe Gar, Sivashith N. and Albert et al. (2013).

Research objectives:

- Investigate the seed dispersal network of tree species that are of particular interest for forest reforestation and carbon sequestration.
- Examine how the link between biodiversity and carbon would support conservation planning and contribute to sustainable implementation of natural climate solutions.