The rationale behind the study...
• Nature-based climate solutions can unlock ~2 billion tons carbon credits per year across the global tropics
• Remote sensing technology can increase transparency in aboveground biomass (AGB) carbon estimation
• However, little consensus on remote sensing datatypes and modelling algorithms used to accurately estimate AGB

We conducted the study by...
• Search terms: ‘aboveground biomass carbon’, ‘tropical forest’, ‘remote sensing’
• Criteria: (i) developed models to predict forest AGB carbon
(ii) area of study within tropical/subtropical forests
(iii) prediction model used remote sensing data
• Recorded accuracy of models (goodness-of-fit statistic, R^2)

Our main findings were...
• Total of 95 studies (501 field sites) across tropical and subtropical forests globally (Fig. 1)
• Model R^2: 78 studies (448 field sites) (Fig. 2)
 ✓ Highest model R^2 → ML algorithms with Optical+LIDAR, Optical+SAR, Optical datatypes
• Validation R^2: 36 studies (151 field sites)
 ✓ Regression and ML algorithms had same R^2 values
 ✓ Optical R^2 > SAR R^2, but Optical R^2 similar to LIDAR R^2
• Model performance (model R^2 and validation R^2) tended to improve with increase in plot size, but not statistically significant (Fig. 3)

The key takeaway...
Our findings provide insights for transparent, robust, and informed assessments of nature-based carbon projects for effective climate change mitigation, with genuine partnerships developed among all stakeholders.